7 hang dang thuc

Những hằng đẳng thức xứng đáng nhớ cứng cáp thân quen gì với chúng ta . Hôm ni Kiến tiếp tục phát biểu kỹ rộng lớn về 7 hằng đẳng thức cần thiết : bình phương của một tổng, bình phương của một hiệu, hiệu của nhì bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhì lập phương và sau cuối là hiệu nhì lập phương. Các các bạn nằm trong tìm hiểu thêm nhé.

Bạn đang xem: 7 hang dang thuc

1. Bình phương của một tổng

Với A, B là những biểu thức tùy ý, tớ có: ( A + B )2 = A2 + 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.
b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32 = a2 + 6a + 9.
b) Ta sở hữu x2+ 4x + 4 = x2+ 2.x.2 + 22 = ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là những biểu thức tùy ý, tớ có: ( A - B )2 = A2 - 2AB + B2.

hang-dang-thuc-dang-nho-01

3. Hiệu nhì bình phương

Với A, B là những biểu thức tùy ý, tớ có:  A2 - B2 = ( A - B )( A + B ).

hang-dang-thuc-dang-nho-02

4. Lập phương của một tổng

Với A, B là những biểu thức tùy ý, tớ có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.

hang-dang-thuc-dang-nho-03

5. Lập phương của một hiệu.

Với A, B là những biểu thức tùy ý, tớ có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.

Ví dụ :

a) Tính ( 2x - 1 )3.
b) Viết biểu thức x3- 3x2y + 3xy2- y3 dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3 

= ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13

 = 8x3 - 12x2 + 6x - 1

b) Ta sở hữu : x3- 3x2y + 3xy2- y3 

= ( x )3 - 3.x2.hắn + 3.x. y2 - y3 

= ( x - hắn )3

6. Tổng nhì lập phương

Với A, B là những biểu thức tùy ý, tớ có: A3 + B3 = ( A + B )( A2 - AB + B2 ).

Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu hụt của hiệu A - B.

Ví dụ:

a) Tính 33+ 43.
b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhì lập phương.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13 = x3 + 1.

Xem thêm: tâm lý tội phạm

7. Hiệu nhì lập phương

Với A, B là những biểu thức tùy ý, tớ có: A3 - B3 = ( A - B )( A2 + AB + B2 ).

Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu hụt của tổng A + B.

Ví dụ:

a) Tính 63- 43.
b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhì lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.
b) Ta sở hữu : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3 - ( 2y )3 = x3 - 8y3.

B. Bài tập luyện tự động luyện về hằng đẳng thức

 Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2 = - 10.

Hướng dẫn:

a) kề dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3 - b3.

( a - b )( a + b ) = a2 - b2.

Khi bại tớ sở hữu ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0

⇔ x3 - x3 + 4x - 27 = 0

⇔ 4x - 27 = 0 

Vậy x= .

b) kề dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2 - b3

( a + b )3 = a3 + 3a2b + 3ab2 + b3

( a - b )2 = a2 - 2ab + b2

Khi bại tớ có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.

⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10

⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10

⇔ 12x = - 6 

Vậy x=

Bài 2: Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

  1. 2x2+ 4xy     B. – 8y2+ 4xy
  2. - 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]

A = x2 – 4y2 – x2 + 4xy - 4y22

Xem thêm: phim hành động mới 2016

A = -8y2 + 4xy

  • Hãy lưu giữ nó nhé

hang-dang-thuc-dang-nho-04

Những hằng đẳng thức xứng đáng nhớ bên trên rất rất cần thiết tủ kỹ năng của tất cả chúng ta . Thế nên chúng ta hãy nghiên cứu và phân tích và ghi lưu giữ nó nhé. Những đẳng thức bại gom tất cả chúng ta xử lý những câu hỏi dễ dàng và khó khăn một cơ hội đơn giản, chúng ta nên thực hiện đi làm việc lại nhằm phiên bản thân ái rất có thể áp dụng đảm bảo chất lượng rộng lớn. Chúc chúng ta thành công xuất sắc và cần cù bên trên tuyến phố học hành. Hẹn chúng ta ở những bài xích tiếp theo